
Automatic High-Level Test Case Generation using
Large Language Models

Abstract—We explored the challenges practitioners face in soft-
ware testing and proposed automated solutions to address these
obstacles. We began with a survey of local software companies
and 26 practitioners, revealing that the primary challenge is
not writing test scripts but aligning testing efforts with business
requirements. Based on these insights, we constructed a use-
case → (high-level) test-cases dataset to train/fine-tune models
for generating high-level test cases. High-level test cases specify
what aspects of the software’s functionality need to be tested,
along with the expected outcomes. We evaluated large language
models, such as GPT-4o, Gemini, LLaMA 3.1 8B, and Mistral 7B,
where fine-tuning (the latter two) yields improved performance.
A final (human evaluation) survey confirmed the effectiveness of
these generated test cases. Our proactive approach strengthens
requirement-testing alignment and facilitates early test case
generation to streamline development.

Index Terms—Test Case, Use Case, Test Case Generation,
Large Language Model

I. INTRODUCTION

Software testing is not an afterthought but a critical element
that must be integrated into the design and development
process [14]. It ensures that the software functions as intended
[4], meets user requirements [11], reveals bugs [23], provides
security [38], and is robust against failures [39]. However, soft-
ware testing faces significant challenges [17]. Manual testing
is time-consuming [5], and as software requirements evolve,
maintaining and updating test cases becomes increasingly
complex [19].

We conducted a pilot survey by consulting three local
software companies to understand their challenges in software
testing. We found that the software industry is experiencing a
shortage of skilled testers, partly due to testing being perceived
as less prestigious than software development. While there
is room for improvement in the coding part of testing (i.e.,
writing test scripts), the main challenge lies in communicating
the business requirements with the testers. Given the business
requirements (e.g., use cases), most testers suffer more to
understand what needs to be tested than converting them to
test scripts. Specifically, testers often struggle to effectively
identify and design tests for edge and negative cases, which
are critical for ensuring the system can handle exceptional and
out-of-bound scenarios.

For example, Figure 1 depicts how a simple use case – ‘Add
Item in Shopping Cart’ – can be expanded into a range of test
cases that address both expected and exceptional conditions.
Testing only the fundamental functionality (in this case, adding
an item works as intended) is not enough. The negative test
case such as ‘Item out of stock’ is crucial for ensuring that

Use case Add Item in Shopping
Cart

Scenario User adds an item to
their shopping cart and
updates the quantity.

Actor User

Precondition User is logged in.

Test case Successful Item Addition

Description Verify a user can
successfully add an in-
stock item

Input Item ID: "12345",
Quantity: "1"

Expected
Output

Item successfully added
to cart

Test case Excessive Quantity Order

Description Verify the system's
ability to handle an
excessively large input.

Input item ID: "12345",
Quantity: "2147483648"

Expected
Output

The system should cap
the quantity at an
allowable limit or
manage the request
without crashing.

Test case Item Out of Stock

Description Verify the system notifies
the user when
attempting to add a out
of stock item.

Input Item ID: "67890",
Quantity: "1"

Expected
Output

"Item out of stock."

…
…
…

…
…
…

Positive
Test case

Negative
Test case

Edge
Test case

Use case

Fig. 1: Use case to Test cases Generation.

the system handles the scenario when an item is not available.
On the other hand, edge cases like ‘Excessive Quantity Order’
examine the system’s ability to handle abnormal inputs, such
as an excessively large order quantity that could be input by
error or as an attempted exploit. If not taken care of, this
might be treated unexpectedly by the system. Depending on
the implementation and the datatype of the corresponding
variable, such overly large numbers can be interpreted as
negative values due to integer overflow. This could bypass
certain types of logic or validation or may even cause the
system to crash.

To that end, we aim to design an automatic system that
can generate all possible high-level test cases for a given use
case. Unlike low-level test cases (i.e., test scripts), high-level
test cases describe what needs to be tested in terms of the
functionality and behavior of the software. The goal is to guide
the testers during the creation of detailed low-level test script
by providing them with a clear understanding of the intended
system behavior, including potential negative and edge cases.

We conduct our study in four phases (as summarized in
Figure 2). In the initial phase, we conducted a broader survey
to verify the findings and assess whether automated high-level
test case generation would be a preferable solution for the
practitioners. We surveyed 26 software practitioners working

in different roles, companies, and countries. They confirmed
that a communication gap indeed exists where ensuring the
team understands what needs to be tested (based on business
requirements) is a key challenge. Most of them agree that
automatic high-level test case generation can be beneficial
in alleviating such issues. However, they raised concerns
about using external server-based tools due to company policy
regarding data security and confidentiality.

In the second phase, we created a dataset of use cases and
corresponding test cases to facilitate automatic generation (i.e.,
training/fine-tuning and evaluating machine learning models).
The dataset contains a total of 1067 samples (i.e., 1067 use
cases and their corresponding test cases) coming from diverse
types of projects (such as E-commerce, Finance, EdTech,
Ride-sharing, etc.). The dataset is made publicly available for
future study.

In the third phase, we investigate the effectiveness of large
language models in generating high-level test cases using
our dataset. We evaluated the performance of different large
language models (i.e., GPT-4o [1], Gemini [44], LLaMA 3.1
[46] and Mistral [25]) to generate high-level test cases from
use cases. While the pre-trained (raw) models show decent
performance with BERTScore as high as 88.43% (F1), fine-
tuning smaller models further improves the results. We fine-
tuned the LLaMA 3.1 and Mistral (comparatively smaller
models) with 80% of our dataset, and their BERTScore im-
proved from 79.85% to 89.94% (for LLaMa) and from 82.86%
to 90.14% (for Mistral). These fine-tuned smaller models
present a suitable option for organizations that prioritize data
confidentiality and require deployment on local servers.

In the final phase, we conducted another survey to assess
the quality of the generated test cases by 26 human evaluators.
They evaluated the generated test cases in five different aspects
(i.e., Readability, Correctness, Completeness, Relevance, and
Usability) on a scale from 1 to 5. The overall quality of
the automated test cases, generated by the pre-trained (GPT-
4o) and fine-tuned (LLaMA 3.1) models, was found to be
satisfactory (>3.5 score in every aspect) with strong read-
ability (avg = 4.25), correctness (avg = 4.19), and usability
(avg = 4.32).

We propose a proactive strategy focusing on early test case
generation immediately following requirement analysis. By
generating these test cases early in the development process,
we can help mitigate the communication gaps that often
lead to misaligned requirements and missed testing scenarios.
Thus, developers can identify potential problems earlier and
streamline the overall development process.
Replication Package. Our code and data are shared at https:
//anonymous.4open.science/r/uctc

II. MOTIVATIONAL SURVEY

In a pilot survey with three local software companies,
we found that a communication gap exists between those
defining the requirements (like project managers and business
analysts) and the teams responsible for testing. This often
leads to software that doesn’t meet specifications or receives

Conduct survey of software practitioners
on the perceived challenges and

preferred solutions in software testing

Create a dataset of use cases and
corresponding test cases

Investigate the effectiveness of large
language models in generating high level

test cases from a given use case

Conduct human evaluation of the
generated high level test cases

Fig. 2: The four major phases of this study.
inadequate testing. According to one CTO, “The primary
challenge in software testing is not writing test scripts but
ensuring the team understands what needs to be tested based
on business requirements”. This insight led us to explore the
potential of high-level test cases – comprehensive outlines of
testing needs that could bridge the gap between requirements
and testing activities.

To verify these claims, we conducted a broader survey of 26
software practitioners, where we investigated how software de-
velopment teams perceive and want to address the challenges
of aligning their testing efforts with business requirements. We
answer the following RQ.
RQ1. How do software development teams perceive their

challenges in aligning testing with business require-
ments, and the role of automated high-level test
cases in addressing these challenges?

We further break down this RQ into the following sub-RQs:
RQ1.1. How frequently do software development teams en-

counter difficulties understanding what needs to be
tested?

RQ1.2. What is the perceived impact of high-level test cases
in guiding testing efforts?

RQ1.3. How do software practitioners perceive the automa-
tion of high-level test case generation?

RQ1.4. What are the practical concerns, such as data con-
fidentiality and organizational policies, that might
influence the adoption of a tool for automated high-
level test case generation?

A. Survey Setup

1) Survey Questions: We asked each participant 8 questions
listed in Table II. The questions focus on exploring the
challenges faced by software development teams in aligning
their testing efforts with business requirements and evaluating
the potential impact of automating high-level test case gen-
eration. The survey questionnaire was designed based on our
pilot survey, where we discussed the challenges of software
testing with industry professionals. The recruitment of those

https://anonymous.4open.science/r/uctc
https://anonymous.4open.science/r/uctc

professionals was conducted mostly by convenient sampling
from the authors’ professional network.

2) Survey Participants: The survey included responses
from 26 participants across various roles, organisations, and
countries. Table I shows the distribution of the participants
over their profession and experience.

TABLE I: Demography of survey participants
Years of Experience

Current Role 0-2 3-5 6-10 10+ Total
Developer 10 5 1 - 16

Tester 5 - 1 1 7
Team Lead - 2 - - 2

Project Manager - 1 - - 1
Total 15 8 2 1 26

B. Challenges in Software Testing (RQ1.1)

Q1 We asked the participants how often they face difficulties
in understanding business requirements when determining
what needs to be tested. The responses revealed most prac-
titioners face such issues on a frequent basis.
• Always: 3.8%
• Often: 15.4%
• Sometimes: 57.7%
• Rarely: 23.1%
• Never: 0%

Q2 We asked the participants about the most challenging
aspect of software testing. Most participants (25) reported that
the most challenging aspect of software testing is ensuring
a clear understanding of what needs to be tested based on
business requirements.
• Writing test scripts: 3.8%
• Determining what to test: 96.2%

C. Impact of High-Level Test Cases (RQ1.2)

Q3 Participants were asked whether they currently use high-
level test cases or not. Most participants (22) responded in the
affirmative, with a few exceptions (4).
• Yes: 84.6%
• No: 15.4%

Q4 For the participants who currently use high-level test
cases, we further asked them who is primarily responsible
for creating those test cases in their organization. While the
testers are mostly responsible for writing such test cases, a few
exceptions (i.e., project managers, and developers) are also
noted.
• Developer: 19.2%
• Tester: 46.2%
• Project Manager: 19.2%
• High-level test cases not used: 15.4%

Q5 We asked the participants about the perceived usefulness
of high-level test cases in guiding the development of test
scripts or manual testing efforts. The responses indicated a
generally positive perception of their usefulness.

• Very Useful: 80.8%
• Moderately Useful: 19.2%
• Slightly Useful: 0%
• Not Useful: 0%

D. Need for Automatic High-level Test Cases (RQ1.3)

Q6 Participants were asked whether they use any tools for
generating or managing high-level test cases. The majority of
the participants indicated that they do not use any specific
tools for high-level test cases.
• Yes: 19.2%
• No: 80.8%

Among the tools mentioned, TestRail was the most common,
cited by 2 participants. One participant informed that they use
a machine-learning based model (developed by themselves)
for this task.
• TestRail 7.7%
• TestCraft 3.8%
• Jira 3.8%
• ML Model 3.8%

Q7 We inquired about the participants’ interest in using a
tool that automatically generates high-level test cases based
on business requirements. The responses indicated a generally
positive attitude towards such a tool.
• Yes: 57.7%
• Maybe: 38.5%
• No: 3.8%

E. Practical Concerns of Automatic Tool (RQ1.4)

Q8 Participants were asked about the existence of any orga-
nizational policies that might restrict the use of external server-
based tools (for software testing). The majority responded that
they have such restrictions due to confidentiality and budget
issues.
• Yes: Due to Confidentiality: 34.6%, Cost: 11.6%
• Not sure: 34.6%
• No: 19.2%

Summary of RQ1. Software practitioners often face chal-
lenges in understanding business requirements, with 96.2%
identifying “determining what to test” as the most difficult
aspect of software testing. High-level test cases are widely
used, with 84.6% of participants confirming their use, and
most participants (80.8%) view them as highly useful in
guiding their testing efforts. However, only 19.2% currently
use tools for maintaining/generating high-level test cases,
despite the majority’s willingness to adopt automated solu-
tions if available. Confidentiality and budget concerns are
major barriers, as 46.2% of participants reported that their
companies restrict the use of tools hosted on external servers.

III. AUTOMATIC GENERATION OF HIGH-LEVEL TEST
CASES

Our survey revealed that a major challenge in software
testing is that testers often struggle with understanding what

TABLE II: Survey questions and their mapping to the Research Questions.
Questions RQ
1 How often do you or your team face difficulties in fully understanding what needs to be tested? 1.1
2 In your experience, which aspect is more challenging for you or your team for software testing? 1.1
3 Do you or your team currently utilize high-level test cases? 1.2
4 If yes, who is primarily responsible for creating high-level test cases in your organization? 1.2
5 How useful do you believe high-level test cases are in guiding manual testing efforts? 1.2
6 Do you or your team currently use any tool to generate or manage high-level test cases? 1.3
7 Would you be interested in using a tool that automatically generates high-level test cases? 1.3
8 Does your organization currently have policies that restrict the use of external server-based tools? 1.4

needs to be tested rather than just focusing on writing test
scripts. In this context, high-level test cases can provide
valuable clarity. The survey participants also express interest
in automated tools to generate high-level test cases. In this
section, we explore the automatic generation of such test cases
from business requirements documents. While we could use
any form of business requirement document, we focus on
use cases because i) they are very common (most software
companies maintain them), and ii) they are typically written
in a structured format that clearly defines the interactions
between users and the system.
RQ2. How effective are large language models in gener-

ating high-level test cases?
RQ3. How effective are smaller models for local server

deployment?
Below, we first describe our dataset creation process. Then,

we describe the motivation and approach for each research
question and report the results.

A. Dataset Creation
To the best of our knowledge, no existing dataset provides

paired use cases and their corresponding test cases. Hence, we
developed a novel dataset leveraging both manually coded and
synthesized data to encompass a broad spectrum of real-world
and custom scenarios. Table III provides a summary of the
dataset’s composition, while Table IV outlines the distribution
of project types within the dataset.

TABLE III: Summary of dataset
Project Type (and Count) #Usecase #Testcase

Human
Generated

Real World Projects (20) 299 1229
Student Projects (42) 281 961

Synthesized UiPath Projects (106) 487 1416
Total 1067 3606

1) Manual Coding: The first part of the dataset was created
through the collaboration of 300 undergraduate students (120
third-year and 180 fourth-year students) enrolled in advanced
software development courses. The students had prior experi-
ence in software development through academic projects and
internships. The students worked in groups of 5-6 members,
with each group supervised by (at least) one faculty member to
ensure the quality of the use cases and their corresponding test
cases. This effort resulted in a total of 580 use cases and 2190
test cases across two main categories: Real-World Applications
and Student Projects.

Real-world Applications: In this category, we provided
students with 20 diverse real-world applications, covering

TABLE IV: Distribution of project types in our dataset.
Type #Student Project #Real World #UIPath Total

Vehicle Management 2 - 3 5
Travel/Entertinment 3 3 2 8
Ride-sharing - 2 - 2
Project Management 4 2 14 20
Productivity - 2 - 2
Job Recruitment - - 8 8
Healthcare 4 - 13 17
Hotel Management 1 1 - 2
Finance - 2 14 16
EdTech 9 3 4 16
E-commerce 8 5 17 30
Agriculture 2 - 1 3
Miscellaneous 9 - 30 39
Total 42 20 106 168

sectors such as finance, education, ride-sharing, and social
media. This approach aimed to capture various practical and
complex requirements reflective of industry settings. Thus we
collected 299 use cases and 1299 test cases.

Student Projects: This category comprises 281 use cases
and 961 test cases originating from 42 unique term projects.
These student projects allowed greater flexibility and creativity
that added unique perspectives to the dataset. Each project
was supervised by faculty that ensures adherence to academic
standards and a coherent structure within the use-case and
test-case pairs.

2) Data Synthesis: The dataset is further enhanced with
synthesized data to facilitate the fine-tuning of smaller models.
We utilized UiPath as a source of additional use cases. UiPath
is a robotic process automation tool for large-scale end-
to-end automation. It is used to automate repetitive tasks
without human intervention. We conducted the data synthesis
as follows.

UiPath Projects: First, we extracted 1237 use cases from
296 UiPath projects. Second, we synthesized test cases for the
extracted use cases using GPT-4o (as done in Section III-B).
Third, we manually validated 1416 test cases corresponding
to 487 use cases (of 106 UiPath projects). Only, the validated
samples were incorporated in the original dataset (see Table
III) and used for fine-tuning.

3) Quality Assurance: We implemented multiple quality
control steps throughout the dataset creation process to ensure
reliability. While supervisors provided feedback on projects
during the creation of use cases and test cases, a final valida-
tion check was performed by one author to ensure consistency
and correctness. For the synthesized data, we employed the
GPT-4o model, which has demonstrated commendable per-

https://www.uipath.com/

formance in generating test cases from use cases (see Section
III-B). We also manually validated all the data points that were
incorporated into our dataset.

B. High-Level Test Cases with Pre-trained Large Language
Models (RQ2)

1) Motivation: Pre-trained LLMs have achieved significant
success across various software engineering tasks such as code
generation [24], [42], [52], code repair [43], [50], and code
documentation [33], [35]. They often perform well without
task-specific fine-tuning or specialized training [6]. Hence,
in this RQ, we investigate the inherent capability of large
language models (LLMs) in generating high-level test cases.

2) Approach: In this study, we evaluated GPT-4o [1] and
Gemini [44] on generating high-level test cases as detailed
below.
Prompt Engineering. The interaction with an LLM (e.g.,
GPT-4) takes place via prompt engineering, where a task
description is provided as the input (prompt), and the model
performs the desired task (generates test cases) accordingly.
There are several ways of prompting i.e., zero-shot, one-
shot, few-shot learning [6]. In zero-shot learning, the model
is expected to generate an answer without providing any
example. In fact, no additional information other than the
task description itself is given in the prompt. On the other
hand, one (or few)-shot learning involves giving one (or more
than one) example(s) in the prompt to guide the LLMs in the
correct direction. In this study, we have developed a simple
yet highly effective one-shot prompting approach where we
craft a generalized but well-rounded example (use case to test
cases pair) that could serve as a proper guideline for the LLM,
provide it in the prompt (as an example), and ask the model
to generate test cases for another use case by learning from
the provided example. The prompt format for generating test
cases from a use case is shown in Figure 3. The prompt begins
with a single example to demonstrate the use case and test
case format. Following this, the specific use case requiring
test case generation is provided. Finally, the prompt includes
instructions to create test cases that comprehensively cover (i)
basic and edge cases, (ii) both positive and negative scenarios,
and (iii) valid and invalid inputs.
Parameter Settings. There are a number of parameters in-
volved with large language models. One such parameter is
Temperature, which controls the randomness of the generated
output (range 0 to 1). Another randomness parameter is Top-p
(range 0 to 1), which controls how unlikely words can get re-
moved from the sampling pool by choosing from the smallest
possible set (of words) whose cumulative probability exceeds
p. As recommended by OpenAI official documentation, we set
the temperature at a low value (0.0) while keeping top-P at
0.95. We also keep Frequency and Presence penalties at their
default values (0.0), which control the level of word repetition
in the generated text by penalizing them based on their existing
frequency and presence.
Evaluation Data. For evaluation, we randomly selected a
subset of 200 human-generated data points from our dataset.

You are a tester tasked with creating comprehensive test cases for a
given use case description.

Use case description
>> Example Use case goes here

Test case
>> Test cases for example use case goes here

Use case description
>> Use case of our interest goes here

Test case

Important Instruction:
 - Understand the last use case.
 - Generate test cases similar to the given example that covers both:
 - Normal and Edge case scenarios
 - Positive and Negative case scenarios
 - Valid and Invalid case scenarios
 - Do not add any explanation or any unnecessary word.
 - Your generated test case must be json parsable and must follow the
 style of the given example.

Example Use
case test case

pair for guide the
LLM about input

and output format

Use case of our
interest

Specific Guideline
that ensure the

comprehensiveness
of test cases

Fig. 3: Prompt for generating test cases from a use case using
pre-trained LLMs.

TABLE V: Performance of pre-trained large language models.
Model Fine-tuned Precision Recall F1 score
Gemini ✗ 86.81% 89.09% 87.92%
GPT-4o ✗ 87.63% 89.27% 88.43%

This sample size provides a balance between computational
efficiency and statistical validity, enabling a meaningful anal-
ysis of the model’s ability to generate test cases that align with
reference outputs.
Evaluation Metrics. Several evaluation metrics exist to com-
pare the machine-generated texts (e.g., automated test cases)
with reference texts (e.g., human-generated test cases) such
as ROUGE [30], BLEU [37], BERTScore [51]. Among them,
we chose BERTScore (using RoBERTa [32] as the underlying
embedding model) as our primary evaluation metric. ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) measures
the overlap between n-grams, longest common subsequences,
and word pairs between the generated and reference texts
[30]. Conversely, the BLEU (Bilingual Evaluation Understudy)
score measures the precision of n-grams between generated
and reference text, often focusing on smaller n-grams such
as unigrams and bigrams [37]. Hence, they are particularly
useful for assessing surface-level or lexical similarity. Their
dependence on exact matches can result in low scores even
when semantically similar words or phrases are used. Unlike
ROUGE and BLEU, BERTScore leverages the pre-trained
contextual embeddings from transformer-based models (e.g.,
BERT, RoBERTa) to measure cosine similarity between the
generated and reference texts. Thus, the BERT Score is less
sensitive to minor lexical differences, which makes it ideal
for our experiment, where the generated test cases should be
semantically equivalent to the reference cases, even if they
differ in wording.

3) Result: The results of the Gemini and GPT-4o models,
as presented in Table V, demonstrate that GPT-4o achieves
higher scores across all evaluation metrics—Precision, Recall,
and F1 Score—compared to Gemini.

1) Precision: GPT-4o has a Precision score of 87.63%,
showing an improvement over Gemini’s 86.81%. This
indicates that GPT-4o is more accurate in generating
relevant outputs, as a higher Precision suggests fewer
irrelevant or erroneous details in the generated test cases
compared to Gemini.

2) Recall: GPT-4o also outperforms Gemini in Recall, with
scores of 89.27% and 89.09%, respectively. This higher
Recall implies that GPT-4o retrieves more comprehensive
information and is better at including all necessary details
in the generated test cases. As Recall reflects the model’s
ability to capture relevant content similar to the reference
cases, GPT-4o’s performance suggests a closer alignment
with human-generated examples.

3) F1 Score: The F1 Score, a harmonic mean of Precision
and Recall, further highlights GPT-4o’s effectiveness.
GPT-4o achieves an F1 Score of 88.43%, an increase
from Gemini’s 87.92%. The higher F1 Score for GPT-4o
underscores its balanced performance in both accuracy
and completeness, making it more reliable for generating
test cases that closely match human-generated references.

Overall, GPT-4o, with its higher Precision, Recall, and F1
Score, demonstrates superior capability in generating test cases
that are both accurate and aligned with reference standards.
This suggests that GPT-4o could be more effective for tasks
requiring high-quality and semantically relevant outputs, as
it consistently performs better than Gemini in all aspects of
evaluation.

Summary of RQ2. We evaluated two LLMs (i.e., GPT-4o
and Gemini) for generating high-level test cases from given
use cases. By applying a one-shot prompting strategy, we
achieved promising results with GPT-4o, which surpassed
Gemini in Precision, Recall, and F1 Score, as evaluated by
BERT Score. This result suggests that GPT-4o, aided by
prompt engineering, can produce accurate and semantically
relevant test cases, making it highly effective for applications
that require high-quality, contextually aligned high-level test
case generation.

C. High-Level Test Cases with Smaller Fine-tuned Models
(RQ3)

1) Motivation: Many software companies are hesitant to
use third-party LLMs for development tasks due to internal
regulations, concerns about confidentiality, and cost. The par-
ticipants of our survey also raised similar concerns. To that
end, we explore the potential of smaller models that come at
a cheaper price and can be deployed on the company’s local
server. Smaller models like LLaMA [46], Mistral [25], Gemma
[45], SOLAR [26] can be fine-tuned for a specific task with a
quality dataset and can often match the performance of larger

general-purpose LLMs [13], [21], [22], [28]. Moreover, these
models consume significantly less memory and computational
power than larger models, allowing them to be deployed in
less powerful machines. Most large-scale models like GPT-4o
require a hefty price for continuous usage, whereas an open-
source model deployed locally obviates the usage cost. Fur-
thermore, an in-house LLM ensures the privacy and security
of confidential data.

2) Approach: We fine-tuned the LLaMA 3.1 8B [46] and
Mistral 7B [25] to generate quality test cases from a given
use case automatically. We chose LLaMA 3.1 8B as it can
handle complex language tasks despite its smaller size and fast
inference. We also fine-tuned Mistral 7B, as it has been shown
to outperform the LLaMA 2 13B model on all benchmarks
and even the LLaMA 134B model on some benchmarks [25].
It also offers practical advantages like faster inference time
and handling longer sequences at a smaller cost. To assess the
impact of fine-tuning, we also evaluated the raw, pre-trained
models (before fine-tuning) as a baseline.
Prompt Engineering. We used the same prompt format
outlined in Section III-B for the fine-tuned models.
Parameter Settings. For fine-tuning the models, we utilized
QLoRA [13] with 4-bit precision to efficiently reduce mem-
ory usage while retaining model performance. We used the
Unsloth library, which promises up to 5 times faster fine-
tuning with a 70% reduction in memory usage for both
LLaMA and Mistral models. For parameter-efficient fine-
tuning (PEFT) [21] with LoRA [22], we set rank = 16 and
alpha = 16; this decreases the computational and memory
cost of LoRA by storing less information. Such parameter-
efficient fine-tuning on high-quality datasets often achieves
high performance (comparable to state-of-the-art) while only
requiring a fraction of the parameters needed for full fine-
tuning [13], [21], [22], [28]. We targeted every linear module
to maximize quality. For faster training, dropout and biases
were not used. The training was run for 10 epochs with a
weight decay of 0.1 and a warm-up ratio of 0.05.
Evaluation Data. We used 80% of the data for fine-tuning
and the remaining 20% for testing. To be specific, we chose
the same 200 data points from Section III-B as our test data
(to facilitate a fair performance comparison between the two
models). We used the remaining portion (i.e., 867 data points)
for fine-tuning the models. While selecting the 200 data points
(in Section III-B), we ensured a project-wise split, which
means there was no overlap of projects between the fine-tuning
and test sets. Thus, the model is evaluated on projects it has
not seen during fine-tuning, allowing for a realistic assessment.
Evaluation Metrics. Similar to Section III-B, we used the
BERTscore to evaluate the generated test cases.

3) Result: The results for the fine-tuned models have been
reported in Table VI. A significant boost in performance
through fine-tuning can be observed. In all three metrics
(precision, recall, F1), the fine-tuned models obtain scores in
the range of 89-90%, beating all the non-fine-tuned models,
including GPT-4o and Gemini (Table V). This further validates
our expectation of replicating or surpassing the performance

https://unsloth.ai/

of huge models like GPT-4o and Gemini using a much smaller
model fine-tuned with a quality dataset [13], [21], [22], [28].

TABLE VI: Performance of smaller (fine-tuned) models.
Model Fine-tuned Precision Recall F1 score
LLaMA 3.1 8B ✗ 75.70% 84.52% 79.85%
LLaMA 3.1 8B ✓ 90.11% 89.8% 89.94%
Mistral 7B ✗ 81.36% 84.44% 82.86%
Mistral 7B ✓ 90.21% 90.1% 90.14%

Summary of RQ3. Two state-of-the-art open-source models
were chosen within the 10B parameter range for fine-tuning,
namely LLaMA 3.1 8B and Mistral 7B. We utilized QLoRA
with 4-bit precision to fine-tune these models using our
limited hardware. Despite the relatively smaller size of these
models, they gained significant results after fine-tuning,
outperforming massive pre-trained models like GPT-4o and
Gemini. These results suggest that software companies can
maintain in-house fine-tuned LLMs capable of generating
quality test cases while ensuring privacy.

D. Human Evaluation

1) Motivation: While automatic metrics provide a stan-
dardized way to assess generated test cases, they may lack
the nuance and contextual understanding required for a com-
prehensive evaluation. BERTScore, which works based on
semantic similarity, can overlook critical aspects such as
logical structure, the presence of edge cases, and specific
testing contexts. Two test cases that appear similar in language
might differ in the logical sequence of actions or conditions.
BERTScore might rate them highly similar, overlooking struc-
tural discrepancies that a human evaluator would consider
significant. Moreover, BERTscore doesn’t inherently capture
the adequacy of edge or negative cases in generated test cases.
Hence, a generated set can have high similarity to the reference
but lacks critical edge or negative scenarios – something a
human evaluator would prioritize. Hence, a complete human
evaluation of the automated test cases is necessary.

2) Approach: We conducted a human evaluation survey
to complement the limitations of BERTScore in assessing
generated test cases. As mentioned in the earlier sub-sections,
we evaluated the automatic models on 200 test samples (i.e.,
use case and test cases pairs). At 90% confidence level and
10% margin of error, a statistically significant sample size
would be 51. Hence, we randomly selected 52 use cases, each
with corresponding human-generated, GPT-4o-generated, and
LLaMA 3.1-generated test cases. These samples were divided
into 13 sets (each containing 4), and distributed to 26 human
evaluators (with each set to be reviewed by two evaluators).
While there is partial overlap with the previous group of 26
survey participants, the majority are different individuals. To
prevent bias, the order of the test cases was randomized, and
there was no indication of whether the test cases were human-
generated or machine-generated.

The participants were asked to evaluate each set of test
cases based on several criteria that are essential to high-quality
software testing: Readability (clarity of reading), Correctness

(functional accuracy), Completeness (coverage of scenarios),
Relevance (focus on essentials), and Usability (ease of trans-
formation into test scripts). Evaluators rated these five aspects
on a Likert scale of 1 to 5 (1 being the lowest, 5 being
the highest). The questionnaire for the evaluation survey is
detailed in Table VII.

We collected responses from all evaluators and calculated
the average scores across all five aspects for each sample type
(human-generated, GPT-generated, and LLaMA-generated).
We measured the average interrater agreement (between the
two evaluators of each set) using Cohen’s Kappa [10]. To be
specific, we used quadratically weighted Cohen’s Kappa as
it accounts for the ordinal nature of the Likert scale (i.e., 1
to 5) and penalizes larger discrepancies between ratings more
heavily than smaller ones [48]. The overall Cohen’s Kappa
between the two sets of raters was measured to be 0.42,
indicating a moderate level of agreement [34].

TABLE VII: Evaluation Criteria and Survey Questions
Aspect Question

Readability How clear and easy to understand are the
test cases?

Correctness How accurately do the test cases capture
the intended functionality of the use case?

Completeness
How thoroughly do the test cases cover all
relevant scenarios, including positive, edge,
and negative cases?

Relevance
How well do the test cases focus on essential
aspects, avoiding unnecessary or irrelevant
steps?

Usability How easily can the test cases be transformed
into executable test scripts?

3) Result: The result of the human evaluation is summa-
rized in Table VIII and is discussed below.
Readability: Both GPT-4o and LLaMA 3.1 produced clear
and easy-to-understand test cases with readability scores of
4.51 and 4.54, respectively. Interestingly, these models even
slightly surpassed the readability of human-generated cases,
which scored 4.46. This speaks to the inherent language
processing capabilities of LLMs, which are pre-trained on
extensive datasets to handle a variety of linguistic patterns
with fluency.
Correctness: Human-generated test cases achieved the highest
correctness score of 4.31. GPT-4o followed closely with a
score of 4.23, while LLaMA scored lower at 4.15. This
implies that GPT-generated test cases are more effective than
those produced by LLaMA in capturing core functionalities
accurately.
Completeness: Human-generated test cases scored the highest
for completeness (4.04), while GPT-generated cases had a
slightly lower score (3.91), and LLaMA scored the lowest
(3.61). It is interesting to see how all the samples, including
the human-generated ones, suffer the most in completeness,
i.e., covering all possible scenarios including edge cases and

negative cases. The gap is even larger for the automated test
cases.
Relevance: LLaMA scored marginally higher at 4.02 on rele-
vance, just surpassing GPT’s 3.98. Nevertheless, both models
fell short of the human-generated score of 4.30. This difference
suggests that while machine-generated cases succeed in captur-
ing core functionality, they may occasionally include steps that
are irrelevant. LLaMA’s slightly better performance (compared
to GPT) can be attributed to task-specific fine-tuning.
Usability: Human-generated test cases were rated the most us-
able (4.43), while both GPT-4o and LLaMA followed closely
with scores of 4.33 and 4.30, respectively. That suggests that
given the high-level test cases, testers can easily convert them
to the low-level test cases (i.e., test scripts).

TABLE VIII: Human evaluation of the generated test cases.
Aspect Human GPT-4o LLaMA 3.1
Readability 4.46 4.51 4.54
Correctness 4.31 4.23 4.15
Completeness 4.04 3.91 3.61
Relevance 4.30 3.98 4.02
Usability 4.43 4.33 4.30

Summary of Human Evaluation. The overall performance
of the automated test cases is satisfactory, achieving at
least moderate scores (> 3.5) across all evaluation crite-
ria. Both GPT-4o and LLaMA 3.1 test cases demonstrate
strong readability, correctness, and usability, though they
show limitations in completeness and relevance. A neg-
ative correlation is observed between completeness and
relevance: GPT-4o compromises dearly on relevance to
achieve completeness, often including unnecessary details,
while LLaMA prioritizes relevance, which might lead to
incomplete scenario coverage. This can be attributed to
the inherent design of each model, where GPT’s broader
training encourages extensive detail, while LLaMA’s fine-
tuning emphasizes conciseness.

IV. DISCUSSION

A. Impact of Enhanced Context

To evaluate whether the LLMs perform better with more
context, we assessed the two following approaches: 1) Pro-
viding more information about the project in the prompt with
a brief overview, and 2) Using RAG to select more relevant
examples for one-shot prompting.

1) Impact of Prompts with Project Descriptions: Thus far,
the LLMs, both pre-trained like GPT-4o and fine-tuned like
LLaMA 3.1, were being instructed with one-shot prompts
where they only had a use case to generate test cases from.
To add more context to our prompts, we enhanced them with
a brief description of the project/module/submodule to which
the use case in consideration belongs. The improved prompt
is shown in Figure 4.

We randomly choose a subset of 100 data points from our
previous test dataset of 200. All data points of this subset
belong to the real-world project section of our dataset. We

You are a tester tasked with creating comprehensive test cases for a
given use case description.

Project description
>> Project description of the example
 use case goes here

Use case description
>> Example Use case goes here

Test case
>> Test cases for example usecase goes here

Project description
>> Project description of the use case of
 our interest goes here

Use case description
>> Use case of our interest goes here

Test case

Important Instruction:
 - Understand the last use case.
 - Generate test cases similar to the given example that covers both:
 - Normal and Edge case scenarios
 - Positive and Negative case scenarios
 - Valid and Invalid case scenarios
 - Do not add any explanation or any unnecessary word.
 - Your generated test case must be json parsable and must follow the
 style of the given example.

Example Use case
test case pair with
project description

Use case of our
interest with

project description

Fig. 4: Prompt for generating test cases from a use case using
pre-trained LLMs.

then crafted enhanced prompts for them by inserting a brief
overview of their corresponding project/module.

We then evaluated the performance of GPT-4o and the fine-
tuned LLaMA 3.1 8B and Mistral 7B models on the subset of
the test dataset using the enhanced prompts.

TABLE IX: Performance of models with enhanced prompts
using project descriptions.

Model Description Precision Recall F1 Score
GPT-4o ✗ 87.29% 88.77% 88.01%
GPT-4o ✓ 87.08% 88.87% 87.95%
LLaMA 3.1 8B ✗ 89.30% 89.14% 89.21%
LLaMA 3.1 8B ✓ 89.31% 89.23% 89.26%
Mistral 7B ✗ 89.40% 89.34% 89.35%
Mistral 7B ✓ 89.49% 89.14% 89.31%

From Table IX, it is evident that the enhanced prompts do
not make any significant difference in the performance of the
models. This could be attributed to two possible reasons: 1)
the use cases written by our human annotators are already
self-sufficient, and the addition of a project description does
not contribute much to the context, and 2) LLaMA 3.1 8B and
Mistral 7B have already been fine-tuned without the enhanced
prompts; as a result, they might not require the additional
context to generate quality test cases.

2) Impact of Using RAG: Studies find that relevant exam-
ples given in the prompt can improve LLM performance [16],
[24]. Hence, we integrated Retrieval Augmented Generation
(RAG) [29] utilizing Gemini Embedding and Chroma-DB

https://ai.google.dev/gemini-api/docs/embeddings
https://pypi.org/project/chromadb/

as our document store. Our knowledge base consists of use
case–test case pairs from the student project section of our
human-generated dataset. Through RAG, we retrieve the most
relevant use cases from this knowledge base, which we then
provide as examples in our one-shot learning prompt.

We examined the impact of incorporating RAG on the same
subset of 100 data points as used in Section IV-A1, with results
summarized in Table X. Interestingly, performance gains were
not as substantial as anticipated. This is because our use
case–test case pairs are mostly distinct, as they come from
different projects. Consequently, the retrieved examples may
not be as relevant, offering limited support to the LLM and
resulting in nearly equivalent performance.

TABLE X: Performance of models with enhanced prompts
using RAG.

Model RAG Precision Recall F1 Score
GPT-4o ✗ 87.29% 88.77% 88.01%
GPT-4o ✓ 88.22% 88.78% 88.49%
LLaMA 3.1 8B ✗ 89.30% 89.14% 89.21%
LLaMA 3.1 8B ✓ 88.91% 88.70% 88.79%
Mistral 7B ✗ 89.40% 89.34% 89.35%
Mistral 7B ✓ 89.13% 88.65% 88.88%

B. Common Issues of LLM-Generated Test Cases

We manually analyzed the generated test cases and identi-
fied some common issues.
Irrelevant Test Cases: LLMs sometimes generate test cases
that do not align with the specified use case making as-
sumptions not supported by the scenario. This is especially
apparent in the “Relevance” aspect in our human evalua-
tion (Section III-D) and we can see how both GPT-4o and
LLaMA suffer at this (Table VIII). This can be attributed
to LLM’s hallucination, a commonly known phenomenon
where the model generates plausible-sounding but incorrect
information. For example, for the use case “Organize Content
into Columns“, (where a user arranges content side-by-side by
creating multiple columns on a note-taking application), GPT-
4o generates a test case “Failed Content Organization Due
to Invalid Column Number” to check a scenario where users
might attempt an invalid column count. But such a scenario is
not relevant in the given app’s context.
Redundant Test Cases: LLM can produce test cases that are
essentially duplicates (with slight modifications). They test
similar scenarios that do not provide additional insight. For
example, for the use case “Switch Between Delivery and
Pickup While Browsing the Restaurant Menu” of an online
food ordering app, LLaMA produces the following successful
cases: i) Switch to Delivery, ii) Switch to Pickup, iii) Switch
to Delivery from Pickup, iv) Switch to Pickup from Delivery.
These test cases are intended to check successful transitions
from the ‘delivery’ option to ‘pickup’ option and vice-versa.
As such, the first and third test cases are the same and so are
the second and fourth ones.
Insufficient Test Cases: LLMs may overlook test cases that
human testers would typically consider, specially various edge
cases. For example, for the use case “Add Icons and Cover

Art” of a media management system, it is important to test
that unsupported file-types are denied by the system. This
edge case is incorporated in the human-generated test cases as
“Invalid Cover Image type” where the test is performed with
a ‘pdf’ file instead of an image (e.g., ‘jpg’, ‘png’). However,
both GPT-4o and LLaMA fail to include such edge cases.
Lack of Input Specification: LLM-generated test cases can
sometimes lack a structured input format, which leads to
inconsistent levels of detail and clarity compared to human-
generated test cases. For example, in the use case “Add
comments to Page” of a custom social media application,
the human coder adds the following input fields for a given
test case: [‘user’, ‘commentText’, ‘mentionedPersons’, ‘men-
tionedGroups’]. However, due to lack of proper context, the
LLM-generated test cases fail to capture the ‘mentioned-
Groups’ field and only include the input fields: [‘user’, ‘com-
mentText’, ‘mention’]. Moreover, human coders are often
more capable utilizing realistic data entries for input fields
compared to LLMS. While such realistic input values may
seem unnecessary in the context of high-level test cases
(specially when using dummy data), contextually appropriate
entries can be helpful in certain cases. For example, in
a mapping application, realistic place names and locations
enable testers to understand the functionalities under test more
accurately. They provide a meaningful reference for expected
tests and results.

C. Threats to Validity

Internal validity concerns the potential inconsistencies
within the study. One threat is response bias, where partic-
ipants may provide answers to correspond with social desir-
ability or perceived expectations. To address this, we assured
participants of the anonymity and confidentiality of their
responses. Another threat can be related to hyperparameter
optimization. The models used in our study depend on hyper-
parameters that can significantly influence performance. Given
the vast search space, exhaustive hyperparameter tuning was
resource-intensive and beyond our primary objective. While
the current configuration achieves satisfactory results, further
optimization could yield better results.

External validity relates to the generalizability of our
findings to broader contexts. The participants of both the
pilot and the main survey are selected using the principle of
convenience sampling from the professional network of the
authors. This could incur a selection bias. In order to avoid
this, we included a diverse set of practitioners across different
roles, companies, countries, and experience levels. Though
we selected real-world applications from diverse sectors (e.g.,
finance, education, social media) and incorporated original
student projects to capture a wide range of testing scenarios,
our dataset may not fully represent all industry scenarios.

Construct validity addresses the extent to which the study
measures what it intends to measure. A primary construct
validity threat arises from the possibility that our survey
responses do not fully capture the practical challenges software
teams face in aligning testing with business requirements. We

mitigated this by designing specific survey questions based on
pilot study findings and mapping them directly to our research
questions, ensuring alignment with our study objectives. The
second concern regarding construct validity is subjectivity in
prompt tuning. Effective prompts engineering of LLMs are
not standardized in software engineering, and hence, prompt
configuration is prone to variability. We mitigate this by
experimenting with different settings of prompts and iteratively
finding the best ones. This again reduces the variability due
to prompts, though further refinements are possible.

Conclusion validity concerns the validity of the conclusions
that is made from the results. To ensure consistency and
reduce individual evaluator bias in human evaluation, we used
two evaluators for each sample. We also measured interrater
reliability using Cohen’s Kappa, which provided an objective
metric for agreement among evaluators. Additionally, we pro-
vided clear guidelines on evaluation criteria to the evaluators
that ensure the reliability of our findings.

V. RELATED WORK

Several approaches have been explored for automatic test
case generation, including randomization, search-based algo-
rithms, and deep learning.

Earlier randomization-based approaches, such as Randoop
[36], generate test cases based on feedback-directed random
sequences of method calls, and adapt based on previous execu-
tion results. Search-based methods like EvoSuite [15] employ
evolutionary algorithms to iteratively create and optimize test
cases for the highest code coverage. Recent works such as
AthenaTest [47], A3Test [2] frame test case generation as a
neural machine translation task (Code→Testcase) and generate
test cases for a given (Java) method.

More recently, LLMs have been successfully employed for
several software testing tasks, including test case generation
[20], [49]. Schafer et al. designed TestPilot, an adaptive LLM-
based test generation tool, to generate unit tests of JavaScript
APIs [41]. Codex [8] was also utilized to generate code and
test cases from natural language descriptions of the Program
under Test (PUT) [7], [27]. Chen et al. proposed ChatUniTest,
an LLM-based automated unit test generation framework that
incorporates an adaptive focal context mechanism to encom-
pass valuable context in prompts and rectify errors in generated
unit tests [9]. Dakhel et al. proposed Mutation Test case
generation with Augmented Prompt (MuTAP) that improves
LLM test generation through iterative prompt mutation [12].
SymPrompt [40] structured test suite creation with sequenced,
code-aware prompts to improve accuracy and coverage. Tes-
tART [18] utilized ChatGPT-3.5 based on prompt injection
and feedback to improve the reliability of tests and high pass
rate, high coverage, thus further demonstrating the potential
of LLM-driven testing methods.

Even though LLMs have garnered significant engagement
in generating test cases, high-level test case generation using
LLMs is a field greatly under-explored, even though such test
cases see great usage (Section II-C). Our study addresses this
gap by thoroughly exploring the effectiveness of pre-trained

LLMs and fine-tuned smaller LLMs in generating high-level
test cases. Furthermore, utilizing only the use case of a task
to generate test cases through LLMs is also a novel direction.
Moreover, unlike most existing techniques (that require code
to generate test cases), our proposed dataset and method
(leveraging only use cases) supports early testing or test driven
development, a key element of many agile frameworks [3].

VI. CONCLUSION AND FUTURE WORK

Our pilot survey of three local software companies points
out to one of the most pivotal challenges in software testing:
misinterpretation of business requirements and inadequate
testing of vital functionalities. To address this, we assessed
the potential of high-level test cases: test cases that primarily
outline what functionalities and behaviors need to be tested,
relaxing focus on the test-case-scripting part. We conducted
another broader survey on a diverse collection of software in-
dustry experts to understand how helpful or necessary they find
these test cases. The survey strongly validated our previous
finding that a lack of understanding is the major challenge in
software testing. We also discovered that majority of experts
rely on high-level test cases and find them useful. They also
showed interest in adopting an automated tool for high-level
test cases, given that proper confidentiality was ensured.

We rigorously explored the effectiveness of large language
models (such as GPT-4o and Gemini) for automatically gener-
ating high-level test cases. To address the requirement of con-
fidentiality, we also evaluated fine-tuned smaller open-source
models that can be maintained locally. For the evaluation and
fine-tuning, we developed a novel dataset containing 3606 test
that correspond to 1067 use cases of 168 diffent projects.

To further verify the quality of our curated dataset and
the performance of the LLMs, another human survey was
performed with the help of software industry experts. The
participants evaluated the quality of the test cases generated by
humans, pre-trained LLMs, and fine-tuned smaller LLMs on
different criteria (e.g, Readability, Correctness, Completeness,
Relevance, Usability). While the human-written test cases
obtained the highest ratings, scoring very high (4+ out of
5) in each criterion, the LLM-generated ones also received
satisfactory scores.

In the future, we plan to– i) Analyse LLM performance
on challenging project types. We will identify areas where
LLMs underperform, especially in complex or high-stakes
applications, to guide model and prompt refinement, ii) Ex-
plore domain-specific fine-tuning We will fine-tune LLMs
using project/domain-specific datasets, such as healthcare, or
e-commerce, to improve the generation of relevant test cases
for specific industries, iii) Focus on edge cases. Curriculum
learning [31] can be explored in introducing simple cases first
and progressing to more complex edge cases to improve the
model’s robustness, iv) Explore requirement generation from
project summaries. We will leverage (and possibly enrich) our
dataset to evaluate LLMs in generating detailed requirements
and test cases from brief project descriptions, accelerating the
initial stages of development.

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] S. Alagarsamy, C. Tantithamthavorn, and A. Aleti. A3test: Assertion-
augmented automated test case generation. Information and Software
Technology, 176:107565, 2024.

[3] D. Astels. Test driven development: A practical guide. Prentice Hall
Professional Technical Reference, 2003.

[4] V. R. Basili and R. W. Selby. Comparing the effectiveness of soft-
ware testing strategies. IEEE transactions on software engineering,
(12):1278–1296, 1987.

[5] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07), pages 85–103.
IEEE, 2007.

[6] T. B. Brown. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[7] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen. Codet: Code generation with generated tests. arXiv preprint
arXiv:2207.10397, 2022.

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

[9] Y. Chen, Z. Hu, C. Zhi, J. Han, S. Deng, and J. Yin. Chatunitest: A
framework for llm-based test generation. In Companion Proceedings of
the 32nd ACM International Conference on the Foundations of Software
Engineering, pages 572–576, 2024.

[10] J. Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46, 1960.

[11] R. D. Craig and S. P. Jaskiel. Systematic software testing. Artech House,
2002.

[12] A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C.
Desmarais. Effective test generation using pre-trained large language
models and mutation testing. Information and Software Technology,
171:107468, 2024.

[13] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora:
Efficient finetuning of quantized llms. Advances in Neural Information
Processing Systems, 36, 2024.

[14] G. D. Everett and R. McLeod Jr. Software testing: testing across the
entire software development life cycle. John Wiley & Sons, 2007.

[15] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, pages 416–419, 2011.

[16] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
M. Wang, and H. Wang. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997, 2023.

[17] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh.
Exploring the industry’s challenges in software testing: An empirical
study. Journal of Software: Evolution and Process, 32(8):e2251, 2020.

[18] S. Gu, C. Fang, Q. Zhang, F. Tian, and Z. Chen. Testart: Improving
llm-based unit test via co-evolution of automated generation and repair
iteration. arXiv preprint arXiv:2408.03095, 2024.

[19] M. J. Harrold. Testing evolving software. Journal of Systems and
Software, 47(2-3):173–181, 1999.

[20] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang. Large language models for software engi-
neering: A systematic literature review. ACM Transactions on Software
Engineering and Methodology.

[21] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly. Parameter-efficient transfer
learning for nlp. In International conference on machine learning, pages
2790–2799. PMLR, 2019.

[22] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[23] A. Islam, N. T. Hewage, A. A. Bangash, and A. Hindle. Evolution of
the practice of software testing in java projects. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR),
pages 367–371. IEEE, 2023.

[24] M. A. Islam, M. E. Ali, and M. R. Parvez. MapCoder: Multi-agent
code generation for competitive problem solving. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4912–4944.

[25] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[26] D. Kim, C. Park, S. Kim, W. Lee, W. Song, Y. Kim, H. Kim, Y. Kim,
H. Lee, J. Kim, et al. Solar 10.7 b: Scaling large language models with
simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166,
2023.

[27] S. K. Lahiri, S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty, M. Musu-
vathi, P. Choudhury, C. von Veh, J. P. Inala, C. Wang, et al. Interactive
code generation via test-driven user-intent formalization. arXiv preprint
arXiv:2208.05950, 2022.

[28] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691,
2021.

[29] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in
Neural Information Processing Systems, 33:9459–9474, 2020.

[30] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out, pages 74–81, 2004.

[31] Y. Liu, J. Liu, X. Shi, Q. Cheng, Y. Huang, and W. Lu. Let’s learn step
by step: Enhancing in-context learning ability with curriculum learning.
arXiv preprint arXiv:2402.10738, 2024.

[32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[33] Q. Luo, Y. Ye, S. Liang, Z. Zhang, Y. Qin, Y. Lu, Y. Wu, X. Cong,
Y. Lin, Y. Zhang, et al. Repoagent: An llm-powered open-source
framework for repository-level code documentation generation. arXiv
preprint arXiv:2402.16667, 2024.

[34] M. L. McHugh. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica, 22(3):276–282, 2012.

[35] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers.
Using an llm to help with code understanding. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
pages 1–13, 2024.

[36] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion,
pages 815–816, 2007.

[37] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, pages
311–318, 2002.

[38] B. Potter and G. McGraw. Software security testing. IEEE Security &
Privacy, 2(5):81–85, 2004.

[39] R. H. Rosero, O. S. Gómez, and G. Rodrı́guez. 15 years of software re-
gression testing techniques—a survey. International Journal of Software
Engineering and Knowledge Engineering, 26(05):675–689, 2016.

[40] G. Ryan, S. Jain, M. Shang, S. Wang, X. Ma, M. K. Ramanathan,
and B. Ray. Code-aware prompting: A study of coverage-guided test
generation in regression setting using llm. Proceedings of the ACM on
Software Engineering, 1(FSE):951–971, 2024.

[41] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip. An empirical evaluation of
using large language models for automated unit test generation. IEEE
Transactions on Software Engineering, 2023.

[42] N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and S. Yao.
Reflexion: Language agents with verbal reinforcement learning. In
Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[43] H. Tang, K. Hu, J. P. Zhou, S. Zhong, W.-L. Zheng, X. Si, and K. Ellis.
Code repair with llms gives an exploration-exploitation tradeoff. arXiv
preprint arXiv:2405.17503, 2024.

[44] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut,
J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

[45] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,
L. Sifre, M. Rivière, M. S. Kale, J. Love, et al. Gemma: Open

models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

[46] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[47] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan.
Unit test case generation with transformers and focal context. arXiv
preprint arXiv:2009.05617, 2020.

[48] S. Vanbelle. A new interpretation of the weighted kappa coefficients.
Psychometrika, 81(2):399–410, 2016.

[49] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang. Software
testing with large language models: Survey, landscape, and vision. IEEE
Transactions on Software Engineering, 2024.

[50] C. S. Xia, Y. Deng, S. Dunn, and L. Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint, 2024.

[51] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore:
Evaluating text generation with bert. In 8th International Conference
on Learning Representations (ICLR), 2020.

[52] A. Zhou, K. Yan, M. Shlapentokh-Rothman, H. Wang, and Y.-X. Wang.
Language agent tree search unifies reasoning acting and planning in
language models. arXiv preprint arXiv:2310.04406, 2023.

	Introduction
	Motivational Survey
	Survey Setup
	Survey Questions
	Survey Participants

	Challenges in Software Testing (RQ1.1)
	Impact of High-Level Test Cases (RQ1.2)
	Need for Automatic High-level Test Cases (RQ1.3)
	Practical Concerns of Automatic Tool (RQ1.4)

	Automatic Generation of High-Level Test Cases
	Dataset Creation
	Manual Coding
	Data Synthesis
	Quality Assurance

	High-Level Test Cases with Pre-trained Large Language Models (RQ2)
	Motivation
	Approach
	Result

	High-Level Test Cases with Smaller Fine-tuned Models (RQ3)
	Motivation
	Approach
	Result

	Human Evaluation
	Motivation
	Approach
	Result

	Discussion
	Impact of Enhanced Context
	Impact of Prompts with Project Descriptions
	Impact of Using RAG

	Common Issues of LLM-Generated Test Cases
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

